518,518 research outputs found

    Slotted Aloha for Networked Base Stations

    Full text link
    We study multiple base station, multi-access systems in which the user-base station adjacency is induced by geographical proximity. At each slot, each user transmits (is active) with a certain probability, independently of other users, and is heard by all base stations within the distance rr. Both the users and base stations are placed uniformly at random over the (unit) area. We first consider a non-cooperative decoding where base stations work in isolation, but a user is decoded as soon as one of its nearby base stations reads a clean signal from it. We find the decoding probability and quantify the gains introduced by multiple base stations. Specifically, the peak throughput increases linearly with the number of base stations mm and is roughly m/4m/4 larger than the throughput of a single-base station that uses standard slotted Aloha. Next, we propose a cooperative decoding, where the mutually close base stations inform each other whenever they decode a user inside their coverage overlap. At each base station, the messages received from the nearby stations help resolve collisions by the interference cancellation mechanism. Building from our exact formulas for the non-cooperative case, we provide a heuristic formula for the cooperative decoding probability that reflects well the actual performance. Finally, we demonstrate by simulation significant gains of cooperation with respect to the non-cooperative decoding.Comment: conference; submitted on Dec 15, 201

    Modelling the energy efficiency of microcell base stations

    Get PDF
    The power consumption of wireless access networks will become a major issue in the coming years. Therefore, it is important to have a realistic idea about the power consumption of each element in those access networks. In this paper, an energy efficiency model for microcell base stations is proposed. Based on this model, the energy efficiency of microcell base stations is compared for various wireless technologies, namely mobile WiMAX, HSPA and LTE. The power consumption of microcell base stations is about 70-77% lower than for macrocell base stations but a macrocell base station is more energy-efficient than a microcell base station for the same bit rates. However, for the considered case and assuming our parameters are correct, a reduction in power consumption can be obtained by using microcell base stations to fill coverage holes

    Flexible Power Modeling of LTE Base Stations

    Get PDF
    With the explosion of wireless communications in number of users and data rates, the reduction of network power consumption becomes more and more critical. This is especially true for base stations which represent a dominant share of the total power in cellular networks. In order to study power reduction techniques, a convenient power model is required, providing estimates of the power consumption in different scenarios. This paper proposes such a model, accurate but simple to use. It evaluates the base station power consumption for different types of cells supporting the 3GPP LTE standard. It is flexible enough to enable comparisons between state-of-the-art and advanced configurations, and an easy adaptation to various scenarios. The model is based on a combination of base station components and sub-components as well as power scaling rules as functions of the main system parameters

    Software-only TDOA/RTF positioning for 3G WCDMA wireless network

    Get PDF
    A hybrid location finding technique based oil time difference of arrival (TDOA) with round-trip time (RTT) measurements is proposed for a wideband code division Multiple access (WCDMA) network. In this technique, a mobile station measures timing from at least three base stations using user equipment receive-transmit (UE Rx-Tx) time difference and at least three base stations measure timing from the mobile station using RTT. The timing measurements of mobile and base stations are then combined to solve for both the location of the mobile and the synchronization offset between base stations. A software-only geolocation system based on the above mobile/base stations timing measurements is implemented in Matlab platform and the performance of the system is investigated using large-scale propagation models

    Planning Solar in Energy-managed Cellular Networks

    Get PDF
    There has been a lot of interest recently on the energy efficiency and environmental impact of wireless networks. Given that the base stations are the network elements that use most of this energy, much research has dealt with ways to reduce the energy used by the base stations by turning them off during periods of low load. In addition to this, installing a solar harvesting sys- tem composed of solar panels, batteries, charge con- trollers and inverters is another way to further reduce the network environmental impact and some research has been dealing with this for individual base stations. In this paper, we show that both techniques are tightly coupled. We propose a mathematical model that captures the synergy between solar installation over a network and the dynamic operation of energy-managed base stations. We study the interactions between the two methods for networks of hundreds of base stations and show that the order in which each method is intro- duced into the system does make a difference in terms of cost and performance. We also show that installing solar is not always the best solution even when the unit cost of the solar energy is smaller than the grid cost. We conclude that planning the solar installation and energy management of the base stations have to be done jointly

    Green Base Station Placement for Microwave Backhaul Links

    Get PDF
    Wireless mobile backhaul networks have been proposed as a substitute in cases in which wired alternatives are not available due to economical or geographical reasons. In this work, we study the location problem of base stations in a given region where mobile terminals are distributed according to a certain probability density function and the base stations communicate through microwave backhaul links. Using results of optimal transport theory, we provide the optimal asymptotic distribution of base stations in the considered setting by minimizing the total power over the whole network.Comment: Proceedings of the International Symposium on Ubiquitous Networking (UNet'17), May 2017, Casablanca, Morocc

    Many-to-Many Matching Games for Proactive Social-Caching in Wireless Small Cell Networks

    Full text link
    In this paper, we address the caching problem in small cell networks from a game theoretic point of view. In particular, we formulate the caching problem as a many-to-many matching game between small base stations and service providers' servers. The servers store a set of videos and aim to cache these videos at the small base stations in order to reduce the experienced delay by the end-users. On the other hand, small base stations cache the videos according to their local popularity, so as to reduce the load on the backhaul links. We propose a new matching algorithm for the many-to-many problem and prove that it reaches a pairwise stable outcome. Simulation results show that the number of satisfied requests by the small base stations in the proposed caching algorithm can reach up to three times the satisfaction of a random caching policy. Moreover, the expected download time of all the videos can be reduced significantly
    corecore